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ABSTRACT 

 
Humanity is on the verge of having the capability of 
constructively directing environmental changes on a planetary 
scale.  Within the foreseeable future, we will have the 
technology to modify Mars' environment, and make it a 
habitable planet.  However, we do not have enough information 
to determine the course of such an event.  To our knowledge, no 
known terrestrial organism has the capability of living on Mars' 
surface under present conditions.  However, with some 
modification, Mars' environment could be brought into the 
survival and growth range of currently known microorganisms.  
Using the SHOT Ecopoesis Testbed, we performed 
survival/growth experiments to determine the suitability of 
potential pioneering life forms for Mars.  Included among the 
potential pioneers were five genera of cyanobacteria (Anabaena, 
Chroococcidiopsis, Plectonema, Synechococcus and 
Synechocystis), three partially-characterized Atacama Desert 
heterotrophic eubacterial strains, and several desert varnish 
isolates.  Microorganisms were exposed to a present-day mix of 
martian atmospheric gases, but at a pressure of 100 mbar (10 
times Mars' current atmospheric pressure).  Cultures were 
inoculated into samples of JSC Mars-1 soil stimulant and 
exposed to full-spectrum simulated martian sunlight.  Day/night 
temperature cycled from 26°C to -80°C and back.    Preliminary 
results indicate that both autotrophic and heterotrophic bacteria 
can survive in the simulated engineered martian environment.   
 

 
INTRODUCTION 

 

In relation to terrestrial organisms, Mars' environment is 
harsher than any on Earth.  The combination of low 
temperature, low atmospheric pressure, low moisture, 
high atmospheric CO2 fraction and high UV flux is not 
experienced by any known Earth organism.  However, 
Earth organisms may be found in environments that 
include at least one of the martian environmental factors 
(although Mars is still harsher in most respects).  The dry 
valleys of Antarctica provide a low temperature, low 
moisture, high UV environment.  Chile's Atacama Desert 
is arguably the driest place on Earth.  Some hot springs  

 
 
 
and volcanic vents produce anoxic environments with 
very high CO2 levels.  Alpine and stratospheric 
environments possess low pressure, low temperature and 
high UV. 
 
Each of these terrestrial environments harbors some form 
of life. Organisms living there have adapted to the 
extreme conditions, and those adaptations are genetically 
encoded. In theory, genes encoding favorable 
characteristics from one organism could be transferred to 
another organism, which already possesses some other 
characteristics for extreme environment survival.  With 
enough genetic alterations, we could conceivably "build" 
a microorganism—a "marsbug"—that could survive, 
reproduce and grow in a somewhat modified martian 
environment. 
 
Ten years ago, Hiscox and Thomas (Hiscox and Thomas, 
1995) detailed some of the characteristics that an ideal 
marsbug might possess.  Here, we elaborate upon and 
update these characteristics, and summarize some initial 
experiments in which organisms with some of these 
characteristics were tested under approximated martian 
conditions. 
 

DESIRABLE TRAITS FOR PIONEER 

MICROORGANISMS 

 
For the purposes of this paper, we assume that initial, 
non-biological, modification of Mars' environment would 
occur before pioneer microorganisms are introduced.  At 
minimum, Mars would have an atmospheric pressure of at 
least 25 mbar, significant periods of above-freezing 
temperatures, and significant bodies of liquid water 
(Thomas, 1995).  At 25 mbar, water boils at 9°C, 
providing a narrow temperature window at which water 
remains liquid.  Also, recent studies suggest that Earth 
bacteria do not grow at pressures below 25 mbar 
(Schuerger et al., 2006a; Schuerger and Nicholson, 2005).  
Even with initial modification, the martian environment 
would be at least as harsh as the least hospitable 
environments on Earth.  Accordingly, pioneer 
microorganisms would require many, if not all, of the 
following characteristics (summarized in Table I). 
 
Autotrophy.  Mars has no known reserves of organic 
materials.   Pioneer  organisms  would  need to make their  
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Table I.  Desirable characteristics for pioneer martian microorganisms.  The lists of microorganisms and references are examples 

only, and are not meant to be exhaustive. 

Characteristic Example Microorganisms References 

Autotrophy: oxygenic 
photosynthesis 

Cyanobacteria, algae (Blankenship and Hartman, 1998; Burger-Wiersma 
and Matthijs, 1990; Dismukes et al., 2001; Fay, 1983; 
Goodwin, 1980; Ho and Krogman, 1982; Kaplan et 
al., 1988; Tabita, 1994; Xiong and Bauer, 2002) 

Autotrophy: chemosynthesis Nitrosamonas, Nitrobacter, 
Thiobacillus, methanogens 

(Atlas, 1997; Boston et al., 1992; Chyba and Hand, 
2001; Northup et al., 2003; Stevens and McKinley, 
1995) 

Psychrophily Pyramimonas, Fragilariopsis, 
Pseudo-nitzschia, Porosira, 
Entomoneis, Nitzschia. 

(Chen and Berns, 1978; Christner et al., 2003; 
Daugbjerg, 2000; Gaidos et al., 2004; Gilichinsky et 
al., 2003; McMinn et al., 2005; Morita, 1975) 

CO2 tolerance Anabaena, Plectonema, Cyanidium, 
Nannochloris 

(Negoro et al., 1991; Seckbach et al., 1970; Seckbach 
and Libby, 1970; Thomas et al., 2005) 

Hypoxia tolerance Anabaena, Plectonema, Cyanidium  (Seckbach et al., 1970; Thomas et al., 2005; Zehnder 
and Svensson, 1986) 

Carbonate dissolution Matteia, other cyanobacteria and 
algae 

(Crispim et al., 2003; Friedmann et al., 1993) 

Denitrification Pseudomonas, Paracoccus, 
Streptomyces 

(Baker et al., 1998; Hart et al., 2000; Kumon et al., 
2002; Zumft, 1997) 

Nitrogen fixation Anabaena, Chroococcidiopsis, 
Cyanothece, Synechococcus, 
Trichodesmium 

(Almon and Böger, 1988; Berman-Frank et al., 2001; 
Böhme, 1998; Fay, 1983; Friedmann and Kibler, 
1980; Golden and Yoon, 1998; Klingler et al., 1989; 
Mitsui and Cao, 1988; Olson et al., 1998; Potts et al., 
1983; Schneegurt et al., 2000; Wolk, 1988) 

Osmotic tolerance, 
desiccation resisistance 

Chroococcidiopsis, Halomonas, 
Klebsormidium, Oscillatoria, 
Phormidium, endospore-forming 
bacteria, extreme halophiles 

(Abyzov et al., 1967; Billi et al., 2001; Billi et al., 
2000; Cockell et al., 2005; de Winder et al., 1989; 
Frankenberg-Schwager et al., 1975; Imshenetsky and 
Lysenko, 1965; Kraegeloh and Kunte, 2002; Olson et 
al., 1998) 

UV/ionizing radiation 
resistance 

Aspergillus, Bacillus, 
Chroococcidiopsis, Deinococcus, 
Mycobacterium, Rubrobacter 

(Battista et al., 1999; Bauche and Laval, 1999; Billi et 
al., 2000; Cockell et al., 2005; Ferreira et al., 1999; 
Imshenetsky et al., 1967; Imshenetsky et al., 1977) 

Hypobaric tolerance Aspergillus, Mycobacterium, 
Pseudomonas, Staphylococcus, 
Streptococcus 

(Frankenberg-Schwager et al., 1975; Hawrylewicz et 
al., 1967; Imshenetsky et al., 1977; Imshenetsky et al., 
1970; Silverman and Beecher, 1967) 

Switchable genes and 
pathways 

Cyanobacteria, facultative 
autotrophs, genetically modified 
agricultural plants 

(Garlick et al., 1977; Guay and Silver, 1975; Sarhan 
and Danyluk, 1998; Sorokin et al., 2000) 

 
own biomolecules from inorganic constituents via 
photosynthesis or chemosynthesis.  Photosynthesis would 
replace the CO2 in Mars' atmosphere with O2—a key 
process in planetary engineering (Graham, 2004; McKay, 
1998; McKay et al., 1991; Thomas, 1995).  Iron and 
manganese-oxidizing chemolithotrophs produce dark-
colored byproducts (Dorn and Oberlander, 1981), which 
decrease the albedo of rock surfaces, and would aid in the 
heating of Mars (Boston et al., 2004). 
 

Antioxidants.  Oxygenic photosynthesis produces a 
variety of reactive oxygen species (ROS) as normal 
byproducts of electron transfer.  In addition, Mars’ 
surface is currently a highly oxidizing environment, 
presumably due to UV-produced ROS (Hunten, 1979; 
Plumb et al., 1989; Yen et al., 2000).  Currently, we do 
not know whether initial engineering efforts would 
change the oxidizing nature of Mars' surface.  However, 
other environmental stresses, such as chilling, increase the 
amount of ROS produced by photosynthesis (Clare et al., 

1984; Hodgson and Raison, 1991a; Hodgson and Raison, 
1991b; Thomas et al., 1999; Wise, 1995; Wise and 
Naylor, 1987).  Pioneer microorganisms would require 
robust antioxidant systems in order to detoxify both 
internally- and externally-generated ROS. 

 

Psychrophily.  Even under engineered conditions, Mars 
will be cold.  Truly psychrophilic organisms have 
optimum growth temperatures below 20°C (Atlas, 1997).  
The ability to grow at low temperature requires an entire 
suite of enzymes that operate well at low temperature as 
well as highly unsaturated membrane lipids 
(Chattopadhyay and Jagannadham, 2001; Gerday et al., 
2000; Morita, 1975; Russell, 2000; Zecchinon et al., 
2001).  Thus, psychrophilic autotrophs may be good 
starting organisms to which other characteristics could be 
added. 

 

CO2 tolerance.  Mars' atmosphere currently contains 95% 
CO2, albeit at low pressure.  We expect initial engineering 
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efforts to increase the total atmospheric pressure primarily 
through the release of additional CO2 from the polar caps 
and from possible carbonate rocks, which would further 
increase the proportion of CO2.  At high CO2 levels, 
decreased pH becomes a factor as well. When CO2 
dissolves in water, it forms carbonic acid with a pH of 5.5 
- 6.0 at 1000 mbar.  Fortunately, several cyanobacteria 
and at least one alga survive and grow in >20% CO2 at 
1000 mbar, and many microorganisms grow within the 
pH range of 5 - 6 (Negoro et al., 1991; Seckbach et al., 
1970; Seckbach and Libby, 1970; Thomas et al., 2005). 

 

Hypoxia tolerance.  Mars' atmosphere contains very little 
O2.  Pioneer microorganisms will have to grow during 
extended periods of hypoxia or anoxia.  Even though 
photosynthesis produces O2, plants require at least 50 
mbar pO2 for proper development (due in part to the large 
proportion of non-photosynthetic tissues) (Alpi and 
Beevers, 1983; Atwell et al., 1982; Barclay and Crawford, 
1982; Jackson and Drew, 1984).  Most chemoautotrophs 
also require O2 in order to oxidize inorganic molecules for 
energy production (Atlas, 1997), thus limiting their initial 
growth on Mars.  Fortunately, most of the CO2-tolerant 
photoautotrophic microbes, cited previously, also grow 
anaerobically. 

 
Carbonate dissolution.  As mentioned previously, 
carbonates are a potential source of atmospheric CO2.  
Many cyanobacteria and algae cause damage to 
limestone-based structures due to carbonate dissolution—
the conversion of carbonate ions into CO2 (Crispim et al., 
2003).  If Mars has extensive carbonate deposits, such 
organisms could speed the process of thickening Mars' 
CO2 atmosphere while also providing oxygen.  The 
Antarctic cyanobacterium, Matteia, has been specifically 
suggested for this purpose (Friedmann et al., 1993). 

 

Denitrification.  Although Mars' atmosphere could be 
thickened by the addition of CO2, photosynthesis will 
remove the CO2 and replace it with O2.  An atmosphere of 
pure O2 would result in catastrophic combustion.  On 
Earth, the atmosphere is buffered with N2, which is 
largely nonreactive.  If Mars possesses significant nitrate 
deposits, these can be converted to N2 via the process of 
denitrification (Thomas, 1995).  Denitrifying bacteria use 
nitrate in place of O2 for respiration, and thus are usually 
hypoxia tolerant as well.  Pseudomonas aeruginosa, a 
heterotrophic facultative anaerobe, grows well and 
denitrifies under conditions similar to those expected 
during ecopoesis (Hart et al., 2000).  Additionally, some 
chemoautotrophs utilize nitrate in place of oxygen 
(Oremland et al., 2002), thus avoiding the problem of 
hypoxia and chemosynthesis mentioned previously. 

 

Nitrogen fixation.  Later in the process of planetary 
engineering, biologically-usable nitrogen will need to be 
recycled from the atmosphere.  Nitrogen fixation 
(Mancinelli, 1996)—the opposite of denitrification—
would be detrimental during the initial stages, but would 
be required later in order to stabilize biological 
communities (Thomas, 1995).  Azotobacter vinelandii and 

Azomonas agilis have the capability of fixing nitrogen at 
pN2 as low as 5 mbar (Klingler et al., 1989).  Many 
genera of cyanobacteria also fix nitrogen (Böhme, 1998; 
Fay, 1983; Friedmann and Kibler, 1980; Golden and 
Yoon, 1998; Mitsui and Cao, 1988; Mulholland and 
Capone, 2000; Olson et al., 1998; Potts et al., 1983; 
Schneegurt et al., 2000; Zehr et al., 2001). 

 

Osmotic tolerance.  The initial bodies of water that form 
on Mars probably will contain significant amounts of 
dissolved salts; they may also be transient.  Pioneer 
microorganisms will need to tolerate osmotic stress, and 
survive periods of desiccation.  A large number of Gram-
positive bacteria form endospores that allow long periods 
of dormancy under adverse conditions.  Many non-spore-
forming bacteria also survive periods of desiccation.  The 
period between dormancy and the resumption of 
metabolism should be as short as possible for pioneering 
marsbugs so that they can take full advantage of periods 
of favorable conditions.  Some cyanobacteria undergo 
seasonal desiccation and quickly become active during 
wet periods (de Winder et al., 1989; Hershovitz et al., 
1991a; Hershovitz et al., 1991b; Scherer et al., 1984). 

 

Ultraviolet and ionizing radiation resistance.  Mars has 
very little free O2 and only a very thin ozone layer that 
changes with season and latitude (Barth et al., 1974; 
Lefèvre et al., 2004), which would offer little or no 
protection to potential marsbugs.  Even though Mars 
receives about half as much total solar radiation of Earth, 
the amount of UV at the surface is much higher.  Sun-
exposed surfaces on Mars receive sterilizing doses of UV 
radiation.  However, presumed planetary engineering 
processes would release additional CO2 into the 
atmosphere, and reduce the UV flux at the surface.  For 
example, Mars currently receives approximately 3.5 
Watts m-2 UVC at the equator during the Vernal Equinox, 
but with an atmosphere of 500 mbar CO2, the UVC flux 
drops to 0.9 Watts m-2 (Cockell et al., 2000).  Also, Mars 
doesn't internally generate a magnetic field like Earth's, 
and possesses only patchy remnant crustal magnetic fields 
(Acuna et al., 1999; Acuna et al., 1998; Connerney et al., 
2004; Connerney et al., 2001).  Although some localized 
remnant magnetic fields are up to 30 times stronger than 
those of Earth (Connerney et al., 2001), the lack of a 
global magnetic field allows the surface of Mars to 
receives more cosmic radiation than Earth – 20-30 
centiSieverts/year (Cucinotta et al., 2001).  A marsbug 
would need mechanisms to resist radiation damage, and 
repair any damage that occurs.  Endolithic cyanobacteria, 
which have been suggested as models for martian 
microorganisms (Friedmann and Ocampo-Friedman, 
1994; Friedmann and Ocampo-Friedmann, 1984; Thomas 
and Schimel, 1991), protect themselves from UV by their 
habitats (porous rocks) and by the production of 
photoprotective pigments (Villar et al., 2005).  The 
bacterium, Deinococcus radiodurans, survives very high 
doses of ionizing radiation due to its efficient DNA repair 
mechanisms (Battista et al., 1999; Bauche and Laval, 
1999; Levin-Zaidman et al., 2003; Venkateswaran et al., 
2000).  Desiccation resistant strains of the 
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cyanobacterium Chroococcidiopsis also exhibit resistance 
to ionizing radiation, presumably due to efficient DNA 
repair as well (Billi et al., 2000).  Protective pigments and 
repair enzymes potentially could be genetically added to 
other microorganisms, increasing their abilities to live in 
the martian environment. 

 

Hypobaric tolerance.  Even after initial engineering 
efforts, the atmospheric pressure of Mars would be far 
lower than that of Earth.  While many bacteria can 
survive the desiccation that may occur at low pressure, a 
marsbug would have to actively metabolize and grow.  As 
mentioned previously, bacteria may have a 25 mbar lower 
limit for active growth (Schuerger et al., 2006a; Schuerger 
and Nicholson, 2005).  Bacteria have been isolated from 
the upper atmosphere; however, their metabolic state 
remains controversial (Imshenetsky et al., 1977; 
Wainwright et al., 2003; Wainwright et al., 2004).  They 
may be actively growing without ever "touching ground," 
or they may be dormant while being transported through 
the air.  If these bacteria do indeed remain active while in 
the upper atmosphere, they may have physiological 
characteristics that could be useful on Mars. 

 

"Switchable" genes.  While the introduction of new 
genes into organisms is relatively easy, their regulation is 
more problematic.  Many of the characteristics described 
here are metabolic opposites (e.g., respiration and 
photosynthesis, denitrification and nitrogen fixation).  The 
ability to control pioneer microorganisms over large areas 
with the application of a very dilute controlling agent 
would be highly desirable.  Large numbers of genes are 
switched on and off in organisms that have multiple 
energetic pathways (Garlick et al., 1977; Guay and Silver, 
1975; Sorokin et al., 2000).  "Switchable" genes are also 
desirable in genetically engineered agricultural crops to 
make them resistant to environmental stresses (Sarhan 
and Danyluk, 1998); research in this area may also benefit 
planetary engineering. 
 
A relatively small number of experiments have examined 
the effects of parts of Mars' environment on potential 
pioneer organisms, including UV radiation (Cockell et al., 
2005; Hansen et al., 2005; Nicholson and Schuerger, 
2005; Schuerger et al., 2003), high CO2 (Hart et al., 2000; 
Kanervo et al., 2005; Thomas et al., 2005), low pressure 
and hypoxia (Boston, 1981; Kanervo et al., 2005; Paul et 
al., 2004).  However, these experiments only integrated 2-
5 of the variable conditions that would occur during 
ecopoeisis on Mars.  To address this problem, SHOT, Inc. 
built a simulator capable of specifically replicating most 
of the environmental parameters (with the notable 
exceptions of gravity and cosmic radiation) on Mars 
during all phases of planetary engineering (Thomas et al., 
in review). 
 

ECOPOESIS SIMULATIONS 
 
The SHOT Martian Environment Simulator has been 
operational since May 2005.  As of October 2005, six 
experiments have been performed with durations of 24 

hours to six weeks (Thomas et al., accepted for 
publication).  The initial experiments were primarily to 
determine logistical and analytical needs for longer-
duration research, but we also determined short-term 
survival and growth characteristics for a variety of 
heterotrophic and autotrophic bacteria. 
 
A 24-hour day was used in all experiments.  Illumination 
was provided by a xenon arc lamp (Sylvania 69263-0 
Short Arc Lamp, XBO, 1000 W/HS OFR) fitted with a 
solar filter that provided a close approximation of solar 
radiation.  Photosynthetically active radiation at sample 

level ranged from 15 µmol photons m-2 s-1 in the shaded 

region to 1000 µmol photons m-2 s-1 in direct light.  Total 

ultraviolet radiation (250-400 nm) was 1.7 µmol photons 

m-2 s-1 in the shaded region, and 50 µmol photons m-2 s-1 
in direct light. The temperature regime cycled from a low 
of -80°C to a high of 26°C, diurnally.  This approximated 
the lower latitudes of Mars during the vernal equinox 
(Carr, 1996), but probably is more extreme than what 
would occur after the initial stages of planetary 
engineering.  As of October 2005, all of the experiments 
were performed at an atmospheric pressure of 100 mbar—
10 times Mars' current highest pressure, but only 10% of 
Earth's atmospheric pressure.  For experiments of 14 days 
or less, we used simulated atmosphere of 95% CO2, 2.7% 
N2, 1.6% Ar and 0.13% O2 (Owen et al., 1977).  For 
longer-duration experiments, we used an atmosphere of 
100% CO2.  In most of the experiments, water was added 
(1 mL per day or less) in order to maintain atmospheric 
water saturation. 
 
Cyanobacteria stock cultures were grown in liquid BG-11 
medium, and diluted to A720 = 0.25 with fresh BG-11.  
Heterotrophic bacteria stock cultures were grown in 
trypticase soy broth (TSB), and diluted to A720 = 0.25 with 
fresh TSB.  Several sample configurations were tested, 
including open trays, multi-well tissue culture plates and 
arrays of individual sample containers.  Individual liquid 
cultures or mixtures of cultures were added to sterile JSC 
Mars-1 simulant (5-15 g, depending on the container) to 
the point of saturation.   Desert varnish and cave 
microorganisms were grown on BG-11 agar.  Agar 
cultures were than macerated and mixed with JSC Mars-
1.  While samples were in the simulator, parallel control 
samples were kept at 4°C in darkness.  In cases where 
samples could not be analyzed at the SHOT facility, the 
samples were placed on ice and transported by car or by 
overnight courier. 
 
Samples were analyzed for esterase activity via an assay 
of fluorescein diacetate (FDA) hydrolysis (Adam and 
Duncan, 2001; Schnürer and Rosswall, 1982) at the 
beginning and end of each experiment.  The FDA 
hydrolysis assay indicates microbial metabolism across a 
wide variety of taxa, and correlates well with assays of 
respiration.  Subsamples of 0.5 - 1.0 g were taken from 
each sample before and after each experiment and 
transferred into 15 mL centrifuge tubes.  5 mL of 60 mM 
K2PO4 buffer (pH 7.6) was added to each tube and briskly 

shaken for 10-20 seconds.  Ten µL FDA in ethanol (5 mg 
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mL-1) was added to each tube, and then all tubes were 
incubated for 3-5 hours at 25°C on a rocker table.  
Following incubation, the samples were extracted by 
adding 5 mL 2:1 chloroform:methanol.  The samples were 
centrifuged for 10 minutes at 1000 x g, and the 
supernatant was measured spectrophotometrically at 490 
nm. 
 
Chlorophyll a extractions were also used to determine the 
relative abundance of photosynthetic organisms (Bowles 
et al., 1985; Myers et al., 1980).  Subsamples of 0.5 - 1.0 
g were taken from each sample before and after each 
experiment and transferred into 15 mL centrifuge tubes.  5 
mL of 80% ethanol was added to each tube.  Tubes were 
placed in a -20°C freezer overnight, and then were 
centrifuged for 10 minutes at 1000 x g.  The supernatant 
was measured spectrophotometrically at 664 nm. 
 
For the first two experiments (24 hours and 14 days), 
plate counts (Atlas, 1997) and trypan blue live-dead stains 
(Sigma-Aldrich Co., 2005) were also used to determine 
survival.  However, the tests were very time-consuming 
with ambiguous results, and were discontinued in favor of 
the FDA and chlorophyll assays. 

The full results of the initial experiments are reported 
elsewhere (Thomas et al., accepted for publication).  
Here, we summarize the most relevant results. 
 
In experiments of seven days or longer duration, a "water 
cycle" became evident within the test chamber as water 
tended to condense at the ends as the chamber cooled at 
"night," and the samples at the ends of the chamber 
tended to be moister than samples in the middle.  While 
this was disconcerting at first, it probably approximates 
the conditions on a planet-wide scale—some areas of 
Mars will be wetter than others, and life will become 
distributed according to moisture levels. 
 
Live-dead microscopic assays and plate counts showed 
survival of all of the organisms tested in the overnight and 
14-day trials.  However, because of the small sizes of the 
cells tested, the live-dead assays were prone to large 
errors.  Non-cellular material was sometimes counted as 
cells, and some cells were incorrectly counted as debris.  
Plate counts of cyanobacteria took 1-2 weeks in order to 
grow countable colonies.  In addition, Plectonema and 
Anabaena, being filamentous, gave underestimated results 
from plate counts.  Further use of these assays was 
discontinued. 
 

 
Figure 1.  FDA hydrolysis by eubacteria and cyanobacteria after a 14-day ecopoesis trial.  Hydrolysis rates are per gram of total soil 

simulant.  Samples were placed in two 24-well tissue culture plates—one in direct light, the other in shadow.  "Atacama," "Rock Garden," 

and "Yungay" refer to partially-characterized, heterotrophic Atacama Desert isolates.  "Atacama 2002" is a strain of Klebsiella oxytoca; 

"Rock Garden-2" is a strain of Bacillus licheniformis; and "Yungay-2" is another strain of Bacillus.  The other "Rock Garden" strains 

appear to be species of Staphylococcus (but not S. aureus).  All heterotrophic bacteria were exposed in JSC Mars-1 simulant amended with 

trypticase soy broth.  The cyanobacteria (five organisms on the right side of the graph) were grown in JSC Mars-1 amended with BG-11 

medium.  Each bar represents a single sample. 
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The heterotrophic bacteria, Bacillus and Klebsiella, grew 
very well during short-duration experiments in which they 
were supplied organic nutrients (Figure 1).  These results 
indicate the hardiness of both sporogenic (Bacillus) and 
non-sporogenic (Klebsiella) bacteria.  These organisms 
were discontinued in later experiments since organic 
nutrients are not expected to be available during the early 
ecopoeisis of Mars.  However, since both genera are 
commonly associated with humans, these results have 
relevance for planetary protection issues associated with 
both robotic and human exploration of Mars.  In our 
experiments, heterotrophic bacteria survived at least 14 
days in the simulator.  Although Bacillus spores are 
quickly inactivated in the presence of Mars levels of UV 
(Newcombe et al., 2005; Schuerger et al., 2003; 
Schuerger et al., 2006b), spores beneath the regolith 
would be protected.  Similar experiments to ours (without 
UV) have shown even longer survival times of Bacillus 
under present day martian conditions (Nicholson and 
Schuerger, 2005).  While these results are encouraging 
from a planetary engineering perspective, the presence of 
terrestrial "hitch-hikers" in the martian regolith could 
interfere with astrobiological research on Mars. 
 
Several genera of cyanobacteria have been tested with a 
wide range of survival (Figures 1 and 3).  Cyanobacterial 

survival in the simulator was somewhat correlated with 
CO2 tolerance (Thomas et al., 2005), but desiccation 
resistance also had a role.  Anabaena, Plectonema and 
Chroococcidiopsis appear to be very good candidates for 
further study.  One strain of Chroococcidiopsis in 
particular (CCMEE 029), has been shown previously to 
have higher UV resistance than Bacillus (Cockell et al., 
2005).  UV resistance is especially important for 
cyanobacteria on Mars since they need exposure to light 
for photosynthesis, but that same exposure causes damage 
from UV radiation.  A fine covering of regolith may 
provide UV shielding while still allow enough 
photosynthetically active radiation to reach the cells.  
Further research in this area will prove beneficial both for 
ecopoeisis research and in understanding niches for 
possible extant life on Mars. 
 
Of the desert varnish and cave bacteria (Figure 2), 
Pedomicrobium had very high esterase activity after five 
weeks of exposure.  Even though all of these strains have 
long generation times, Pedomicrobium may also be a 
good candidate for further study.  However, at this time, 
most of these strains have only been partially 
characterized and more information is needed about their 
metabolism and environmental limits. 
 

 
 
Figure 2.  FDA hydrolysis by desert varnish and cave bacteria after a 5-week ecopoesis trial.  Pure cultures from agar plates were mixed 

with BG-11 amended JSC Mars-1 simulant and placed in individual polypropylene containers in direct light.  Strain 1 has been identified 

as Pedomicrobium manganicum isolated from desert varnish.  The other strains are partially-characterized isolates from cave and desert 

varnish environments.  Each bar represents the mean of three samples; error bars = s.d.
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Figure 3.  FDA hydrolysis within a simulated soil community after a 5-week ecopoesis trial.  A simulated soil community was formed by 

mixing cultures of Anabaena sp., Chroococcidiopisis CCMEE171 and CCMEE662, Plectonema boryanum, Klebsiella oxytoca, Bacillus 

licheniformis and Bacillus sp. in JSC Mars-1 simulant amended with BG-11 medium.  The soil was spread over a polystyrene tray, which 

was placed half in light and half in shadow.  After the experiment, the soil was divided into three regions: direct light, transition, and 

indirect light.  Composite samples were mixtures of soil from all three regions.  Three samples were obtained from each region and 

averaged; error bars = s.d. 

 

CONCLUSIONS 
 
With the increasing availability of martian environment 
simulators, the science of planetary engineering is moving 
from the theoretical to the experimental realm.  Although 
planetary-scale ecopoesis is still in the distant future, 
population and community level experiments are possible 
and are currently in progress.  In addition to providing 
insight about possible future life on Mars, these 
experiments also tell us about the survivability of Earth 
organisms in the present martian environment. 
 
As additional simulators become available, voluntary 
standardization of environmental parameters will be 
desirable.  We envision a consortium that would set 
guidelines for planetary simulators so that experiments 
undertaken with different simulators would still be 
directly comparable.  Efforts to form such a consortium 
are currently underway. 
 
Ecopoeisis also provides an exciting opportunity to 
engage students in science.  While many students have 
heard of terraforming through Star Trek and other science 
fiction stories, they usually do not realize that serious 
science underlies the fiction.  Ecopoesis can be used as a 
focal point for discussions of geology, environmental 

science, microbiology, ecology and other disciplines to 
show the interdisciplinary nature of planetary science—
whether that planet is Earth, Mars or one that has not been 
discovered yet.   
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